Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Transl Med Commun ; 8(1): 12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37096233

RESUMEN

Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, there is no curative intent therapy able to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating NET-forming neutrophils [NET + Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b + [NET + N] immunotyped for dual endothelin-1/signal peptide receptor (DEspR ±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)-ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET + N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA (rho r S = 0.80) and ICUFD (r S = -0.76); circulating DEspR + [NET + Ns] with t1-SOFA (r S = 0.71), t2-SOFA (r S = 0.62), and ICUFD (r S = -0.63), and ANC with t1-SOFA (r S = 0.71), and t2-SOFA (r S = 0.61).Causal mediation analysis identified DEspR + [NET + Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR + [NET + Ns] were theoretically reduced to zero. Concordantly, DEspR + [NET + Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR + [NET + Ns] were reduced to zero. In patients with t1-SOFA > 1, the indirect effect of a hypothetical treatment eliminating DEspR + [NET + Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR + [NET + Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR + [NET + Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR + [NET + Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1186/s41231-023-00143-x.

2.
Res Sq ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778407

RESUMEN

Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, no curative intent therapy has been identified to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating neutrophil-extracellular trap (NET)-forming neutrophils [NET+Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b+[NET+N] immunotyped for dual endothelin-1/signal peptide receptor, (DEspR±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET+N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA ( rho r S =0.80) and ICUFD ( r S =-0.76); circulating DEspR+[NET+Ns] with t1-SOFA ( r S = 0.71), t2-SOFA ( r S =0.62), and ICUFD ( r S =-0.63), and ANC with t1-SOFA ( r S =0.71), and t2-SOFA ( r S =0.61). Causal mediation analysis identified DEspR+[NET+Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR+[NET+Ns] were theoretically reduced to zero. Concordantly, DEspR+[NET+Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR+[NET+Ns] were reduced to zero. In patients with t1-SOFA >1, the indirect effect of a hypothetical treatment eliminating DEspR+[NET+Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR+[NET+Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR+[NET+Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR+[NET+Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19.

3.
Front Neurol ; 13: 935579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959408

RESUMEN

Objective: Cumulative clinical, cellular, and molecular evidence reinforces the role of neutrophils in secondary brain injury in spontaneous intracerebral hemorrhage (sICH). However, since generalized neutrophil inhibition is detrimental, identification of targetable "rogue" neutrophil subsets associated with sICH severity is key. Methods: In a pilot prospective observational study of consented patients with sICH, we immunotyped whole blood to assess circulating neutrophil markers (~day 3 after ICH symptoms onset): (a) DEspR±CD11b± neutrophils by flow cytometry, (b) DEspR±CD11b± neutrophil extracellular trap (NET)-forming neutrophils by immunofluorescence cytology, and (c) neutrophil-lymphocyte ratio (NLR). Using Spearman rank correlation (r) with Bonferroni correction, we assessed the association of neutrophil markers with same-day clinical and neuroimaging parameters of sICH severity, index ICH score, 90-day modified Rankin Scale (mRS) score, and potential interrelationships. As comparators, we assessed same-day plasma biomarkers elevated in sICH: interleukin-6/IL-6, myeloperoxidase/MPO, soluble-terminal complement complex/sC5b-9, endothelin-1/ET-1, and mitochondrial/nuclear DNA ratio (mt/nDNA ratio). Results: We detected strong correlations [r(n = 13) > 0.71, power > 0.8, Bonferroni corrected p B < 0.05] for all three neutrophil markers with 90-day mRS score, differentially for DEspR+CD11b+ neutrophil counts, and NLR with perihematomal edema (PHE) volume and for DEspR+CD11b+ NET-forming neutrophil counts with intraparenchymal hemorrhage (IPH)-volume. Only DEspR+CD11b+ neutrophil counts show a strong correlation with index ICH score, same-day Glasgow Coma Scale (GCS) score, and NLR and NET-forming neutrophil counts. The sum of the ICH score and three neutrophil markers exhibited the highest correlation: [r(n = 13) 0.94, p B = 10-5]. In contrast, plasma biomarkers tested were elevated except for MPO but exhibited no correlations in this pilot study. Conclusion: Strong correlation with multiple sICH severity measures, NET formation, and NLR identifies DEspR+CD11b+ neutrophils as a putative "rogue" neutrophil subset in sICH. The even stronger correlation of the sum of three neutrophil markers and the index ICH score with 90-day mRS outcome reinforces early neutrophil-mediated secondary brain injury as a key determinant of outcome in patients with sICH. Altogether, data provide a basis for the formal study of the DEspR+CD11b+ neutrophil subset as a potential actionable biomarker for neutrophil-driven secondary brain injury in sICH. Data also show ex vivo analysis of patients with sICH neutrophils as a translational milestone to refine hypotheses between preclinical and clinical studies.

4.
Cancer Res ; 82(14): 2625-2639, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35657206

RESUMEN

Melanomas frequently harbor activating NRAS mutations. However, limited advance has been made in developing targeted therapy options for patients with NRAS mutant melanoma. MEK inhibitors (MEKi) show modest efficacy in the clinic and their actions need to be optimized. In this study, we performed a genome-wide CRISPR-Cas9-based screen and demonstrated that loss of phosphoinositide-dependent kinase-1 (PDPK1) enhances the efficacy of MEKi. The synergistic effects of PDPK1 loss and MEKi was validated in NRAS mutant melanoma cell lines using pharmacologic and molecular approaches. Combined PDPK1 inhibitors (PDPK1i) with MEKi suppressed NRAS mutant xenograft growth and induced gasdermin E-associated pyroptosis. In an immune-competent allograft model, PDPK1i+MEKi increased the ratio of intratumoral CD8+ T cells, delayed tumor growth, and prolonged survival; the combination treatment was less effective against tumors in immune-deficient mice. These data suggest PDPK1i+MEKi as an efficient immunostimulatory strategy against NRAS mutant melanoma. SIGNIFICANCE: Targeting PDPK1 stimulates antitumor immunity and sensitizes NRAS mutant melanoma to MEK inhibition, providing rationale for the clinical development of a combinatorial approach for treating patients with melanoma.


Asunto(s)
GTP Fosfohidrolasas , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Melanoma , 1-Fosfatidilinositol 4-Quinasa/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Línea Celular Tumoral , GTP Fosfohidrolasas/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas de la Membrana/genética , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética
5.
Sci Rep ; 12(1): 5583, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379853

RESUMEN

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to COVID-19-ARDS. This secondary tissue injury arises from dysregulated neutrophils and neutrophil extracellular traps (NETs) intended to kill pathogens, but instead cause cell-injury. Insufficiency of pleiotropic therapeutic approaches delineate the need for inhibitors of dysregulated neutrophil-subset(s) that induce subset-specific apoptosis critical for neutrophil function-shutdown. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/VEGF-signal peptide receptor, DEspR, are apoptosis-resistant like DEspR+ cancer-cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID-19-ARDS. Here, we report the significant association of increased peripheral DEspR+CD11b+ neutrophil-counts with severity and mortality in ARDS and COVID-19-ARDS, and intravascular NET-formation, in contrast to DEspR[-] neutrophils. We detect DEspR+ neutrophils and monocytes in lung tissue patients in ARDS and COVID-19-ARDS, and increased neutrophil RNA-levels of DEspR ligands and modulators in COVID-19-ARDS scRNA-seq data-files. Unlike DEspR[-] neutrophils, DEspR+CD11b+ neutrophils exhibit delayed apoptosis, which is blocked by humanized anti-DEspR-IgG4S228P antibody, hu6g8, in ex vivo assays. Ex vivo live-cell imaging of Rhesus-derived DEspR+CD11b+ neutrophils showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data identify DEspR+CD11b+ neutrophils as a targetable 'rogue' neutrophil-subset associated with severity and mortality in ARDS and COVID-19-ARDS.


Asunto(s)
COVID-19 , Trampas Extracelulares , Síndrome de Dificultad Respiratoria , Humanos , Inmunofenotipificación , Neutrófilos
6.
Nat Commun ; 13(1): 1381, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296667

RESUMEN

Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral
7.
J Natl Compr Canc Netw ; 19(12): 1382-1394, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34902824

RESUMEN

The NCCN Guidelines for Squamous Cell Skin Cancer provide recommendations for diagnostic workup, clinical stage, and treatment options for patients with cutaneous squamous cell carcinoma. The NCCN panel meets annually to discuss updates to the guidelines based on comments from panel members and the Institutional Review, as well as submissions from within NCCN and external organizations. These NCCN Guidelines Insights focus on the introduction of a new surgical recommendation terminology (peripheral and deep en face margin assessment), as well as recent updates on topical prophylaxis, immunotherapy for regional and metastatic disease, and radiation therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/terapia , Células Epiteliales , Humanos , Inmunoterapia , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/terapia
8.
J Natl Compr Canc Netw ; 19(10): 1181-1201, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34666313

RESUMEN

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Cancer-Associated Venous Thromboembolic Disease focus on the prevention, diagnosis, and treatment of patients with cancer who have developed or who are at risk for developing venous thromboembolism (VTE). VTE is a significant concern among cancer patients, who are at heightened risks for developing as well as dying from the disease. The management of patients with cancer with VTE often requires multidisciplinary efforts at treating institutions. The NCCN panel comprises specialists from various fields: cardiology, hematology/hematologic oncology, internal medicine, interventional radiology, medical oncology, pharmacology/pharmacy, and surgery/surgical oncology. This article focuses on VTE prophylaxis for medical and surgical oncology inpatients and outpatients, and discusses risk factors for VTE development, risk assessment tools, as well as management methods, including pharmacological and mechanical prophylactics. Contraindications to therapeutic interventions and special dosing, when required, are also discussed.


Asunto(s)
Neoplasias , Tromboembolia Venosa , Trombosis de la Vena , Anticoagulantes , Humanos , Oncología Médica , Neoplasias/complicaciones , Neoplasias/terapia , Factores de Riesgo , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiología , Tromboembolia Venosa/prevención & control , Trombosis de la Vena/tratamiento farmacológico
9.
Res Sq ; 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34545358

RESUMEN

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to severe COVID19. This 'innocent bystander' tissue injury arises in dysregulated hyperinflammatory states from neutrophil functions and neutrophil extracellular traps (NETs) intended to kill pathogens, but injure cells instead, causing MOF. Insufficiency of prior therapeutic approaches suggest need to identify dysregulated neutrophil-subset(s) and induce subset-specific apoptosis critical for neutrophil function-shutdown and clearance. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/signal peptide receptor, DEspR, are apoptosis-resistant just like DEspR+ cancer cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID19-ARDS. Here, we report correlation of circulating DEspR+CD11b+ activated neutrophils (DESpR+actNs) and NETosing-neutrophils with severity in ARDS and in COVID19-ARDS, increased DEspR+ neutrophils and monocytes in post-mortem ARDS-patient lung sections, and neutrophil DEspR/ET1 receptor/ligand autocrine loops in severe COVID19. Unlike DEspR[-] neutrophils, ARDS patient DEspR+actNs exhibit apoptosis-resistance, which decreased upon ex vivo treatment with humanized anti-DEspR-IgG4S228P antibody, hu6g8. Ex vivo live-cell imaging of non-human primate DEspR+actNs showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data differentiate DEspR+actNs as a targetable neutrophil-subset associated with ARDS and COVID19-ARDS severity, and suggest DEspR-inhibition as a potential therapeutic paradigm.

10.
J Invest Dermatol ; 140(11): 2242-2252.e7, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32389536

RESUMEN

Melanomas frequently harbor activating NRAS mutations leading to activation of MAPK kinase (MEK) and extracellular signal-regulated kinase 1/2 signaling; however, the clinical efficacy of inhibitors to this pathway is limited by resistance. Tumors rewire metabolic pathways in response to stress signals such as targeted inhibitors and drug resistance, but most therapy-resistant preclinical models are generated in conditions that lack physiological metabolism. We generated human NRAS-mutant melanoma xenografts that were resistant to the MEK inhibitor (MEKi) PD0325901 in vivo. MEKi-resistant cells showed cross-resistance to the structurally distinct MEKi trametinib and elevated extracellular signal-regulated kinase 1/2 phosphorylation and downstream signaling. Additionally, we observed upregulation of the serine synthesis pathway and PHGDH, a key enzyme in this pathway. Suppressing PHGDH in MEKi-resistant cells together with MEKi treatment decreased oxidative stress tolerance and cell proliferation. Together, our data suggest targeting PHGDH as a potential strategy in overcoming MEKi resistance.


Asunto(s)
GTP Fosfohidrolasas/genética , Glutatión/metabolismo , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Humanos , Melanoma/genética , Melanoma/metabolismo , Ratones , Serina/biosíntesis , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cancer Ther ; 18(9): 1637-1648, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31270153

RESUMEN

Combined BRAF and MEK inhibition is a standard of care in patients with advanced BRAF-mutant melanoma, but acquired resistance remains a challenge that limits response durability. Here, we quantitated in vivo ERK1/2 activity and tumor response associated with resistance to combined BRAF and MEK inhibition in mutant BRAF xenografts. We found that ERK1/2 pathway reactivation preceded the growth of resistant tumors. Moreover, we detected a subset of cells that not only persisted throughout long-term treatment but restored ERK1/2 signaling and grew upon drug removal. Cell lines derived from combination-resistant tumors (CRT) exhibited elevated ERK1/2 phosphorylation, which were sensitive to ERK1/2 inhibition. In some CRTs, we detected a tandem duplication of the BRAF kinase domain. Monitoring ERK1/2 activity in vivo was efficacious in predicting tumor response during intermittent treatment. We observed maintained expression of the mitotic regulator, polo-like kinase 1 (Plk1), in melanoma resistant to BRAF and MEK inhibitors. Plk1 inhibition induced apoptosis in CRTs, leading to slowed growth of BRAF and MEK inhibitor-resistant tumors in vivo These data demonstrate the utility of in vivo ERK1/2 pathway reporting as a tool to optimize clinical dosing schemes and establish suppression of Plk1 as potential salvage therapy for BRAF inhibitor and MEK inhibitor-resistant melanoma.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Melanoma/genética , Melanoma/metabolismo , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Quinasa Tipo Polo 1
12.
Pigment Cell Melanoma Res ; 32(6): 829-841, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31251472

RESUMEN

RAS is frequently mutated in various tumors and known to be difficult to target. NRASQ61K/R are the second most frequent mutations found in human skin melanoma after BRAFV600E . Aside from surgery, various approaches, including targeted therapies, immunotherapies, and combination therapies, are used to treat patients carrying NRAS mutations, but they are inefficient. Here, we established mouse NRASQ61K melanoma cell lines and genetically derived isografts (GDIs) from Tyr::NRASQ61K mouse melanoma that can be used in vitro and in vivo in an immune-competent environment (C57BL/6) to test and discover novel therapies. We characterized these cell lines at the cellular, molecular, and oncogenic levels and show that NRASQ61K melanoma is highly sensitive to the combination of Mek and Akt inhibitors. This preclinical model shows much potential for the screening of novel therapeutic strategies for patients harboring NRAS mutations that have limited therapeutic options and resulted in poor prognoses.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/patología , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...